

django-pushserver’s documentation

django-pushserver is a push server for Django [https://www.djangoproject.com/] based on Leo Ponomarev’s Basic
HTTP Push Relay Protocol [http://pushmodule.slact.net/protocol.html]. Useful especially while locally developing Django
applications using Nginx HTTP push module [http://pushmodule.slact.net/].

Contents

	Installation

	Usage

Source Code and Issue Tracker

For development GitHub [https://github.com/] is used, so source code and issue tracker is found
there [https://github.com/mitar/django-pushserver].

Indices and tables

	Index

	Search Page

Installation

Using pip [http://pypi.python.org/pypi/pip] simply by doing:

pip install django-pushserver

You should then add pushserver to INSTALLED_APPS and configure URLs
used for HTTP push. For example:

PUSH_SERVER = {
 'port': 8001,
 'address': '127.0.0.1',
 'store': {
 'type': 'memory',
 'min_messages': 0,
 'max_messages': 100,
 'message_timeout': 10,
 },
 'locations': (
 {
 'type': 'subscriber',
 'url': r'/updates/([^/]+)',
 'polling': 'long',
 'create_on_get': True,
 'allow_origin': 'http://127.0.0.1:8000',
 'allow_credentials': True,
 'passthrough': 'http://127.0.0.1:8000/passthrough',
 },
 {
 'type': 'publisher',
 'url': r'/send-update/([^/]+)',
 },
),
}

Settings translate directly to settings of the py-hbpush [https://github.com/mitar/py-hbpush/tree/mitar] package. Production
settings should match those configured in Nginx.

You should add passthrough URLs to urls.py, matching URL configured in
settings:

urlpatterns = patterns('',
 # ...

 url(r'^passthrough', include('pushserver.urls')),

 # ...
)

Passthrough URLs are not publicly accessible, so you should use
INTERNAL_IPS to configure from which IPs they should be accessible. As you
will probably run both Django development server and push server daemon on the
same machine, this is probably simply:

INTERNAL_IPS = (
 '127.0.0.1',
)

When used in production where Nginx is making passthrough requests, it should
match IP(s) on which you have Nginx running.

If you do not need or want passthrough just do not define it in PUSH_SERVER
setting. Passthrough URLs and ` INTERNAL_IPS`` setting are also not needed in
this case.

Usage

Once installed, run the push server daemon (alongside Django development
server):

./manage.py runpushserver

Or if you want that all requests are processed through push server (and
non-push requests passed to Django), you can do:

./manage.py runpushserver --allrequests

(In this way you are not served static files auto-magically, like you might
be used on Django development server, so you have to take care of that
yourself. Auto-reloading on code change also doesn’t happen. Furthermore,
by default it runs on port 8000 instead of 8001.)

Then you can push data to all clients subscribed to the given channel with
simple HTTP request. If you for example want to push some JSON data (called
update) you can use provided functions:

from pushserver.utils import updates

channel_id = 'some_channel_id'
data = {
 'type': 'answer',
 'value': 42,
}

updates.send_update(channel_id, data)

For JavaScript side you can use provided JavaScript code for processing pushed JSON data as it
comes (it requires jQuery [http://jquery.com/]):

<script type="text/javascript" src="{{ STATIC_URL }}pushserver/updates.js"></script>

The code should be initialized with channels (and their URLs) to subscribe to.
For that a Django template tag channel_url is provided:

{% load pushserver %}

<script type="text/javascript">
 $.updates.subscribe({
 'main_channel': '{% filter escapejs %}{% channel_url "some_channel_id" %}{% endfilter %}'
 });
</script>

Provided code assumes that updates are JSON data, are a dictionary, and have a
top-level value named type by which you can register different update
processors in your JavaScript code. To continue the example:

function updateAnswer(data) {
 // data.value == 42
}

$.updates.registerProcessor('main_channel', 'answer', updateAnswer);

Arguments to $.updates.registerProcessor are the name of the channel as you
have given to $.updates.subscribe, the type, and a processor function
which will be called with given data everytime data arrives.

If you want to process passthrough requests clients are making when subscribing
or unsubscribing, you can connect to provided signals:

from django import dispatch

from pushserver import signals

@dispatch.receiver(signals.channel_subscribe)
def process_channel_subscribe(sender, request, channel_id, **kwargs):
 print "Subscribed", request.user, channel_id

@dispatch.receiver(signals.channel_unsubscribe)
def process_channel_unsubscribe(sender, request, channel_id, **kwargs):
 print "Unsubscribed", request.user, channel_id

Because user credentials were being passed through in this example, Django
session and authentication middlewares should work as expected, populating
request.user.

Be aware that for each sent update, clients unsubscribe and soon afterwards
subscribe again so many signals could be triggered in a rapid succession.
Because of this signal receivers should be very light-weight.

Index

 nav.xhtml

 Table of Contents

 		django-pushserver's documentation

 		Installation

 		Usage

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

